CAR-T細(xì)胞治療毒副作用的多個(gè)解決辦法
瀏覽次數(shù):2707 發(fā)布日期:2020-3-10
來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
![](/imgatl/2020/2020031059343208.png.jpg)
CAR-T細(xì)胞治療經(jīng)常會(huì)伴隨多種毒副作用,如細(xì)胞因子釋放綜合征 (cytokine release syndrome, CRS)、神經(jīng)毒性和B細(xì)胞再生障礙等。其中最為常見(jiàn)的是CRS,其臨床癥狀表現(xiàn)為發(fā)熱及血清細(xì)胞因子水平升高等[1]。CRS毒性與腫瘤負(fù)荷相關(guān),可使用類固醇或抗IL-6受體的抗體塔西單抗(tocilizumab)進(jìn)行治療[2]。
雖然如此,CRS除外的其他毒副作用問(wèn)題仍亟待解決
而自殺基因修飾的CAR-T細(xì)胞,可以很好地幫助解決上述問(wèn)題。在保證CAR-T細(xì)胞靶向殺傷功能的同時(shí),給CAR-T細(xì)胞加上一個(gè)“安全開(kāi)關(guān)”,在未出現(xiàn)急性毒性情況下,或急性毒性情況顯現(xiàn)的早期,可以通過(guò)激活自殺基因誘導(dǎo)CAR-T細(xì)胞凋亡,從而增加CAR-T細(xì)胞治療的安全性。
現(xiàn)在為大家大家介紹幾種常見(jiàn)的自殺基因,果斷收藏吧~
1.單純性皰疹病毒胸苷激酶自殺基因
單純性皰疹病毒胸苷激酶(herpes simplex virus-thymidine kinase,HSV-TK)能夠提高更昔洛韋(ganciclovir)對(duì)靶細(xì)胞殺傷的敏感性。將插入HSV-TK基因的同種異體淋巴細(xì)胞轉(zhuǎn)移至患者體內(nèi),可以在淋巴瘤患者發(fā)生移植物抗宿主病(graft-versus-host disease, GVHD)時(shí),注射更昔洛韋(ganciclovir),促進(jìn)異體淋巴細(xì)胞凋亡,逆轉(zhuǎn)GVHD。使用無(wú)創(chuàng)正電子發(fā)射斷層掃描成像技術(shù)(PET0)追蹤C(jī)AR-T細(xì)胞中9-[4-[18F]氟-3-(羥甲基)丁基]鳥(niǎo)嘌呤 (9-[4-[18F]fluoro-3-(hydroxymethyl) butyl] guanine, [18F]FHBG)探針標(biāo)記的HSV-TK報(bào)告基因的表達(dá),表明HSV-TK可在CAR-T細(xì)胞內(nèi)高效穩(wěn)定表達(dá)[4]。然而,這種病毒特異性基因可能具有免疫原性。已有研究發(fā)現(xiàn),HSV-TK修飾的供體T細(xì)胞移植后,患者出現(xiàn)了HSV-TK特異性CD8+和CD4+ T細(xì)胞免疫反應(yīng)[5]。HSV-TK自殺基因在CAR-T細(xì)胞治療中的應(yīng)用有待進(jìn)一步研究。
2.人類CD20自殺基因
人類CD20基因被認(rèn)為是一種非免疫原性基因。人類CD20基因修飾的T細(xì)胞可被單克隆嵌合抗CD20抗體激活,使用抗CD20的利妥昔單抗 (rituximab) 靶向CD20,激活抗體依賴性細(xì)胞介導(dǎo)的細(xì)胞毒作用(antibody-dependent cell-mediated cytotoxicity,ADCC)和補(bǔ)體介導(dǎo)的細(xì)胞毒作用(complement dependent cytotoxicity,CDC),可誘導(dǎo)T細(xì)胞凋亡[6]-[8],且該方法已開(kāi)始應(yīng)用于臨床治療。CD20自殺基因在CAR-T細(xì)胞治療癌癥中的應(yīng)用仍需進(jìn)一步探討。
![](/imgatl/2020/2020031059599664.png)
3.人類EGFRt(截短的EGF受體)自殺基因
完整的EGFR(EGF receptor, EGFR)包括4個(gè)細(xì)胞外結(jié)構(gòu)域和一個(gè)細(xì)胞內(nèi)酪氨酸激酶結(jié)構(gòu)域。EGFRt(The truncated EGF receptor, EGFRt)缺乏I、 II胞外結(jié)構(gòu)域和全長(zhǎng)EGFR的大部分細(xì)胞質(zhì)區(qū)域。與人類CD20基因類似,人類EGFRt基因修飾的T細(xì)胞可被單克隆嵌合抗EGFRt抗體激活,使用西妥昔單抗(cetuximab)靶向EGFRt,激活A(yù)DCC和CDC作用,可誘導(dǎo)T細(xì)胞凋亡[9]。EGFRt介導(dǎo)的CAR-T細(xì)胞凋亡已被應(yīng)用于多個(gè)CAR-T細(xì)胞靶向臨床試驗(yàn)中,如:Chen Hu, Affiliated Hospital to Academy of Military Medical Sciences (NCT03114670); Julie Park, Seattle Children's Hospital (NCT03618381); Memorial Sloan Kettering Cancer Center (NCT03085173)。
4.誘導(dǎo)性caspase 9自殺基因
另一個(gè)被廣泛研究的用于過(guò)繼細(xì)胞治療的自殺基因是誘導(dǎo)性caspase 9 (induced caspase 9, iCasp9),它由F36V點(diǎn)突變的FK506結(jié)合蛋白與caspase 9蛋白的胞內(nèi)結(jié)構(gòu)域組成,通過(guò)AP1903等小分子藥物誘導(dǎo)caspase 9二聚體化,從而激活iCasp9并引起下游級(jí)聯(lián)反應(yīng) [10]。iCasp9修飾的T細(xì)胞移植后發(fā)生GVHD的患者,靜脈注射AP1903,激活iCasp9,可迅速誘導(dǎo)T細(xì)胞凋亡,逆轉(zhuǎn)GVHD [11]。臨床前研究已經(jīng)觀察到表達(dá)iCasp9的 CAR-T細(xì)胞能有效介導(dǎo)CAR-T細(xì)胞的凋亡[12][13]。iCasp9基因修飾的CAR-T細(xì)胞臨床試驗(yàn)正在進(jìn)行,如:Memorial Sloan Kettering Cancer Center (NCT02414269)。
![](/imgatl/2020/2020031059725800.png)
5.參考文獻(xiàn)
[1]Davila ML1, et al. (2016) Biology and clinical application of CAR T cells for B cell malignancies. Int J Hematol. Jul;104(1):6-17.
[2]Davila ML, et al. (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science Translational Medicine. 6(224):224ra25.
[3]Bonini C1, et al. (1997) HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. Jun 13;276(5319):1719-24.
[4]Keu KV, et al. (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med. Jan 18;9(373). pii: eaag2196.
[5]Berger C1, et al. (2006) Analysis of transgene-specific immune responses that limit the in vivo persistence of adoptivelytransferred HSV-TK-modified donor T cells after allogeneic hematopoietic cell transplantation. Blood. Mar 15;107(6):2294-302.
[6]Introna M, et al. (2000) Genetic modification of human T cells with CD20: a strategy to purify and lyse transduced cells with anti-CD20 antibodies. Hum Gene Ther.11: 611-620.
[7]Griffioen M, et al. (2009) Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica. 94(9):1316–1320.
[8]Vogler I, et al. (2010) An improved bicistronic CD20/tCD34 vector for efficient purification and in vivo depletion of gene-modified T cells for adoptive immunotherapy. Molecular Therapy. 18(7):1330–1338.
[9]Paszkiewicz PJ, et al. (2016) Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. The Journal of Clinical Investigation. 126(11):4262–4272.
[10]Straathof KC1, et al. (2005) An inducible caspase 9 safety switch for T-cell therapy. Blood. Jun 1;105(11):4247-54. Epub 2005 Feb 22.
[11]Di Stasi A, et al. (2016) Inducible apoptosis as as a fety switch for adoptive cell therapy. The New England Journal of Medicine. 2011; 365(18):1673–1683.
[12] Minagawa K, et al. (2016) In vitro pre-clinical validation of suicide Gene modified anti-CD33 redirected chimeric antigen receptor T-cells for acute myeloid leukemia. PloS One. 11(12):e0166891.
[13]Budde LE, et al. (2013) Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PloS One. 2013; 8(12):e82742.
![](/imgatl/2020/2020031060367492.jpg)